

 Navigation

 	
 index

 	
 routing table |

 	
 next |

 	Seed Stage-Based Messaging Store 0.10.1 documentation »

Seed Stage-Based Messaging Store documentation contents

	Requirements
	Overview

	Python requirements

	Seed Requirements

	Setup
	Installing

	Configuration Options

	Data Models
	Content
	Schedule

	MessageSet

	BinaryContent

	Message

	Subscriptions
	Subscription

	Authentication and Authorization
	Basics

	Users and Groups

	Authorization and permissions

	API Details
	Authenticating to the API

	Pagination

	Endpoints
	Core

	Helpers

	Integrations with other Seed services
	Seed Scheduler
	Outgoing integrations

	Incoming integrations

	Seed Message Sender
	Outgoing integrations

	Project Hub
	Incoming integrations

	Production requirements and setup
	Running in Production

Indices, glossary and tables

	Index

	Module Index

	Glossary [http://www.sphinx-doc.org/en/master/glossary.html]

 © Copyright 2017, Praekelt.org.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 next |

 	
 previous |

 	Seed Stage-Based Messaging Store 0.10.1 documentation »

Seed Stage-Based Messaging Store documentation

The Seed Stage-Based Messaging Store is one of the microservices in the Seed
Stack.

The Stage-Based Messaging Store has the following key responsibilities:

	Store the stage-based content (both audio and text).

	Store the stage-based content schedules.

	Store the stage-based content subscriptions for each user.

Getting started

The following resources are provided to help you get started running or
developing the Seed Stage-Based Messaging Store:

	Learn about the Requirements for running the service
and basic Setup instructions.

	Read about the Data Models used by the service.

	Read about the Authorization requirements.

	Browse the API Documentation for the available endpoints and
parameters.

	Read about the Integrations this service has with the
other Seed Stack services.

	Learn about what is required when running the service in
Production

 © Copyright 2017, Praekelt.org.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 next |

 	
 previous |

 	Seed Stage-Based Messaging Store 0.10.1 documentation »

Requirements

Overview

The Seed Stage-Based Messaging Store requires the following dependencies to run:

	Python 2.7

	PostgreSQL >= 9.3

	Redis >= 2.10 or RabbitMQ >= 3.4 as the Celery Broker

Python requirements

The full list of Python packages required are detailed in the project’s
setup.py file, but the major ones are:

	Django 1.9

	Django REST Framework 3.3

	Celery 3.1

Note

A celery worker needs to be running to process post-save tasks and
scheduled metric firing tasks.

Seed Requirements

The Seed Stage-Based Messaging Store only depends on one other seed service,
the Go Metrics API [https://github.com/praekelt/go-metrics-api].

 © Copyright 2017, Praekelt.org.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 next |

 	
 previous |

 	Seed Stage-Based Messaging Store 0.10.1 documentation »

Setup

Installing

The steps required to install the Seed Stage-based Messaging Service are:

	Get the code from the Github Project [https://github.com/praekelt/seed-stage-based-messaging] with git:

$ git clone https://github.com/praekelt/seed-stage-based-messaging.git

This will create a directory seed-stage-based-messaging in your current directory.

	Install the Python requirements with pip:

$ pip install -r requirements.txt

This will download and install all the Python packages required to run the
project.

	Setup the database:

$ python manage migrate

This will create all the database tables required.

Note

The PostgreSQL database for the Seed Stage-based Messaging Store needs
to exist before running this command.
See STAGE_BASED_MESSAGING_DATABASE for details.

	Run the development server:

$ python manage.py runserver

Note

This will run a development HTTP server. This is only suitable for
testing and development, for production usage please
see Running in Production

Configuration Options

The main configuration file is seed_stage_based_messaging/settings.py.

The following environmental variables can be used to override some default settings:

	
SECRET_KEY

	This overrides the Django SECRET_KEY [http://docs.djangoproject.com/en/1.9/ref/settings/#std:setting-SECRET_KEY] setting.

	
DEBUG

	This overrides the Django DEBUG [http://docs.djangoproject.com/en/1.9/ref/settings/#std:setting-DEBUG] setting.

	
USE_SSL

	Whether to use SSL when build absolute URLs. Defaults to False.

	
STAGE_BASED_MESSAGING_DATABASE

	The database parameters to use as a URL in the format specified by the
DJ-Database-URL [https://github.com/kennethreitz/dj-database-url] format.

	
STAGE_BASED_MESSAGING_SENTRY_DSN

	The DSN to the Sentry instance you would like to log errors to.

	
BROKER_URL

	The Broker URL to use with Celery.

	
STAGE_BASED_MESSAGING_URL

	The URL of the instance of the Seed Stage-based Messaging API that will be
used when creating POST-back hooks to this service from other Seed services.

	
SCHEDULER_URL

	The URL to the Seed Scheduler API [https://github.com/praekelt/seed-scheduler] instance.

	
SCHEDULER_API_TOKEN

	The auth token to use to connect to the Seed Scheduler API [https://github.com/praekelt/seed-scheduler] instance
above.

	
SCHEDULER_INBOUND_API_TOKEN

	The auth token to use to connect to this Seed Stage-based Messaging API
from POST-backs from the Seed Scheduler API [https://github.com/praekelt/seed-scheduler] instance.

	
IDENTITY_STORE_URL

	The URL to the Seed Identity Store API [https://github.com/praekelt/seed-identity-store] instance.

	
IDENTITY_STORE_TOKEN

	The auth token to use to connect to the Seed Identity Store API [https://github.com/praekelt/seed-identity-store] instance
above.

	
MESSAGE_SENDER_URL

	The URL to the Seed Message Sender API [https://github.com/praekelt/seed-message-sender] instance.

	
MESSAGE_SENDER_TOKEN

	The auth token to use to connect to the Seed Message Sender API [https://github.com/praekelt/seed-message-sender] instance
above.

	
METRICS_URL

	The URL to the Go Metrics API [https://github.com/praekelt/go-metrics-api] instance to push metrics to.

	
METRICS_AUTH_TOKEN

	The auth token to use to connect to the Go Metrics API [https://github.com/praekelt/go-metrics-api] above.

 © Copyright 2017, Praekelt.org.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 next |

 	
 previous |

 	Seed Stage-Based Messaging Store 0.10.1 documentation »

Data Models

Content

Schedule

Represents either a fixed date & time or interval based cron-like schedule.

Fields

	id

	An auto incrementing integer unique identifier for the record.

	minute

	A character field representing the minute portion of the schedule.
Defaults to * but can be a comma separated list of numbers between 0
and 59.

	hour

	A character field representing the hour portion of the schedule.
Defaults to * but can be a comma separated list of numbers between 0
and 23.

	day_of_week

	A character field representing the day of the week portion of the schedule.
Defaults to * but can be a comma separated list of numbers between 1
and 7 where 1 = Monday and 7 = Sunday.

	day_of_month

	A character field representing the day of the month portion of the
schedule. Defaults to * but can be a comma separated list of numbers
between 1 and 31.

	month_of_year

	A character field representing the month of the year portion of the
schedule. Defaults to * but can be a comma separated list of numbers
between 1 and 12.

MessageSet

Represents a group of Messages a recipient can be sent and the default
Schedule they can be sent on.

Fields

	id

	An auto incrementing integer unique identifier for the record.

	short_name

	A unique name that identifies this MessageSet.

	notes

	An optional free text field for notes about this MessageSet.

	next_set

	An optional self-referencing link to a MessageSet that should follow from
this one.

	default_schedule

	A reference to a Schedule used as the default for this MessageSet.

	content_type

	A choice field between audio and text representing the type of content
this MessageSet contains.

	created_at

	A date and time field of when the record was created.

	updated_at

	A date and time field of when the record was last updated.

BinaryContent

Represents binary file storage for use in the Message object.

Fields

	id

	An auto incrementing integer unique identifier for the record.

	content

	A FileField that represents the binary content’s location on disk.

	created_at

	A date and time field of when the record was created.

	updated_at

	A date and time field of when the record was last updated.

Message

Represents a Message that a recipient can be sent. Can be either text-based or
binary (audio) and is language specific.

Fields

	id

	An auto incrementing integer unique identifier for the record.

	messageset

	A reference to the MessageSet this message belongs to.

	sequence_number

	A required integer representing the order of this message in the set.

	lang

	An ISO639-3 language code.

	text_content

	Optional text content for the message.

	binary_content

	Optional reference to a BinaryContent.

	created_at

	A date and time field of when the record was created.

	updated_at

	A date and time field of when the record was last updated.

Subscriptions

Subscription

Represents a specific Identities subscription to a MessageSet, including the
shedule and current state.

Fields

	id

	A UUID 4 unique identifier for the record.

	identity

	A UUID reference to an Identity stored in the Seed Identity Store.

	version

	An integer version number of the Subscription schema used.

	messageset

	A reference to the MessageSet for this Subscription.

	next_sequence_number

	The integer Message sequence number to use for this Subscription.

	lang

	An ISO639-3 language code representing the preferred language for this
Subscription.

	active

	A boolean of the active status.

	completed

	A boolean of the complete status.

	schedule

	A reference to the Schedule to use for this Subscription.

	process_status

	A integer flag representing the process status of this subscription.

-2 = error

-1 = error

0 = ready

1 = in process

2 = completed

	metadata

	A JSON field of metadata to be stored with the Subscription.

	created_at

	A date and time field of when the record was created.

	updated_at

	A date and time field of when the record was last updated.

	created_by

	A reference to the User account that created this record.

	updated_by

	A reference to the User account that last updated this record.

 © Copyright 2017, Praekelt.org.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 next |

 	
 previous |

 	Seed Stage-Based Messaging Store 0.10.1 documentation »

Authentication and Authorization

Basics

Authentication to the Seed Stage-Based Messaging Store API is provided the
Token Authentication [http://www.django-rest-framework.org/api-guide/authentication/#tokenauthentication] feature of the Django REST Framework [http://www.django-rest-framework.org/api-guide/authentication/#tokenauthentication].

In short, each user of this API needs have been supplied a unique secret token
that must be provided in the Authorization HTTP header of every request made
to this API.

An example request with the Authorization header might look like this:

POST /endpoint/ HTTP/1.1
Host: <stage-based-messaging-store-domain>
Content-Type: application/json
Authorization: Token 9944b09199c62bcf9418ad846dd0e4bbdfc6ee4b

Users and Groups

User and Group objects are provided by the Django Auth framework and can
be added and created through the normal maintenance methods (Django Admin,
Dgango Shell, ...).

There is also a rudimentary API endpoint: POST /user/token/ that will
create a user and token for a given email address (or just a token if a user
with that email address already exists).

Authorization and permissions

All of the current API endpoints do not require any specific permissions other
than a valid authenticated user.

The only exception to this is POST /user/token/ which requires an
admin level user.

 © Copyright 2017, Praekelt.org.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 next |

 	
 previous |

 	Seed Stage-Based Messaging Store 0.10.1 documentation »

API Details

The Seed Stage-Based Messaging Store provides REST like API with JSON payloads.

The root URL for all of the endpoints is:

https://<stage-based-messaging-store-domain>/api/

Authenticating to the API

Please see the Authentication and Authorization document.

Pagination

When the results set is larger than a configured amount, the data is broken up
into pages using the limit and offset parameters.

Paginated endpoints will provide information about the total amount of items
available along with links to the previous and next pages (where available) in
the returned JSON data.

	
GET /(any)/

	

	Query Parameters:

		
	limit – the amount of record to limit a page of results to.

	offset – the starting position of the query in relation to the complete set of unpaginated items

	Response JSON Object:

		
	count (int) – the total number of results available

	previous (string) – the URL to the previous page of results (if available)

	next (string) – the URL to the next page of results (if available)

Example request:

HTTP/1.1 200 OK
Content-Type: application/json

{
 "count": 50,
 "next": "http://sbm.example.org/api/v1/enpoint/?limit=10&offset=30",
 "previous": "http://smb.example.org/api/v1/endpoint/?limit=10&offset=10",
 "results": []
}

Endpoints

The endpoints provided by the Seed Stage-Based Messaging Store are split into
two categories, core endpoints and helper endpoints

Core

The root URL for all of the core endpoints includes the version prefix
(https://<stage-based-messaging-store-domain>/api/v1/)

	
POST /user/token/

	Creates a user and token for the given email address.

If a user already exists for the given email address, the existing user
account is used to generate a new token.

	Request JSON Object:

		
	email (string) – the email address of the user to create or use.

	Response JSON Object:

		
	token (string) – the auth token generated for the given user.

	Status Codes:	
	201 Created [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2] – token successfully created.

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – an email address was not provided or was invalid.

	401 Unauthorized [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – the token is invalid/missing.

Example request:

POST /user/token/ HTTP/1.1
Authorization: Token 9944b09199c62bcf9418ad846dd0e4bbdfc6ee4b

{
 "email": "bob@example.org"
}

Example response:

HTTP/1.1 201 Created
Content-Type: application/json

{
 "token": "c05fbab6d5f912429052830c77eeb022249324cb"
}

Content

	
GET /schedule/

	Returns a list of Schedules.

	
POST /schedule/

	Creates a new Schedule.

	
GET /schedule/(int: schedule_id)/

	Retuns the Schedule record for a given schedule_id.

	
PUT /schedule/(int: schedule_id)/

	Updates the Schedule record for a given schedule_id.

	
DELETE /schedule/(int: schedule_id)/

	Deletes the Schedule record for a given schedule_id.

	
GET /messageset/

	Returns a list of MessageSets.

	
POST /messageset/

	Creates a new MessageSet.

	
GET /messageset/(int: messageset_id)/

	Retuns the MessageSet record for a given messageset_id.

	
PUT /messageset/(int: messageset_id)/

	Updates the MessageSet record for a given messageset_id.

	
DELETE /messageset/(int: messageset_id)/

	Deletes the MessageSet record for a given messageset_id.

	
GET /messageset/(int: messageset_id)/messages/

	Returns a list of Messages for a given messageset_id.

	
GET /message/

	Returns a list of Messages.

	
POST /message/

	Create a new Message record.

	
GET /message/(int: message_id)/

	Returns the Message record for a given message_id.

	
PUT /message/(int: message_id)/

	Updates the Message record for a given message_id.

	
DELETE /message/(int: message_id)/

	Deletes the Message record for a given message_id.

	
GET /message/(int: message_id)/content/

	Returns the content for a given message_id.

	
GET /binarycontent/

	Returns a list of BinaryContent records.

	
POST /binarycontent/

	Creates a new BinaryContent record.

	
GET /binarycontent/(int: binarycontent_id)/

	Returns the BinaryContent record for a given binarycontent_id.

	
PUT /binarycontent/(int: binarycontent_id)/

	Updates the BinaryContent record for a given binarycontent_id.

	
DELETE /binarycontent/(int: binarycontent_id)/

	Deletes the BinaryContent record for a given binarycontent_id.

Subscriptions

	
GET /subscriptions/

	Returns a list of Subscriptions.

	
POST /subscriptions/

	Creates a new Subscription record.

	
GET /subscriptions/(int: subscription_id)/

	Returns the Subscription record for a given subscription_id.

	
PUT /subscriptions/(int: subscription_id)/

	Updates the Subscription record for a given subscription_id.

	
DELETE /subscriptions/(int: subscription_id)/

	Deletes the Subscription record for a given subscription_id.

	
POST /subscriptions/(int: subscription_id)/send

	Triggers a send for the next Subscription message for the given
subscription_id.

The actual sending is processed asynchronously by a Celery worker.

	Response JSON Object:

		
	accepted (boolean) – Whether send for subscription_id is accepted.

	reason (string) – An optional reason why the request was not accepted.

	Status Codes:	
	201 Created [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2] – request to send the next message accepted.

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – invalid subscription_id given.

	
POST /subscriptions/request

	Creates a new subscription.

This endpoint is called as a webhook request from the project
Hub service when a new registration is created that requires a
subscription.

As such the entire payload is expected to be provided as an object
in the data parameter.

	Request JSON Object:

		
	data (json) – a JSON representation of a Subscription object.

	Response JSON Object:

		
	accepted (boolean) – Whether new subscription was created.

	Status Codes:	
	201 Created [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2] – subscription created.

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – invalid request.

Helpers

The root URL for the helper endpoints does not include a version prefix
(https://<stage-based-messaging-store-domain>/api/)

	
GET /metrics/

	Returns a list of all the available metric keys provided by this service.

	Status Codes:	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – no error

	401 Unauthorized [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – the token is invalid/missing.

	
POST /metrics/

	Starts a task that fires all scheduled metrics.

	Status Codes:	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – no error

	401 Unauthorized [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – the token is invalid/missing.

	
GET /health/

	Returns a basic health check status.

	Status Codes:	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – no error

	401 Unauthorized [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – the token is invalid/missing.

 © Copyright 2017, Praekelt.org.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 next |

 	
 previous |

 	Seed Stage-Based Messaging Store 0.10.1 documentation »

Integrations with other Seed services

The Seed Stage-based Messaging Store currently integrates with three other
Seed services.

Seed Scheduler

Outgoing integrations

New subscription

When a new Subscription object is created locally (via the API or the
webhook endpoint) an async Celery task is queued to communicate to the
Seed Scheduler to create a scheduled POST-back to the Stage-based Messaging
Store endpoint (POST /subscriptions/(int:subscription_id)/send) on the
given schedule in the subscription.

Updated subscription

When a Subscription object is updated locally there are two integrations
to the Seed Scheduler than can occur:

	If the update is marking the Subscription as complete, an async Celery task
is queued to communicate to the Seed Scheduler to deactive the scheduled
POST-backs for this Subscription.

	If the update is marking the Subscription as inactive, an async Celery task
is queued to communicate to the Seed Scheduler to deactive the scheduled
POST-backs for this Subscription.

Incoming integrations

Once a schedule has been setup (see New subscription) in the
Seed Scheduler for a Subscription, the Scheduler will call the
(POST /subscriptions/(int:subscription_id)/send) endpoint on the setup
schedule.

Seed Message Sender

Outgoing integrations

Message Sending

When the Subscription send endpoint (
POST /subscriptions/(int:subscription_id)/send) is called by the
Scheduler an async Celery task is queued to process the Subscription.

During this process each message that needs to be sent will be queued by
making a request to the Seed Message Sender with the relevant message and
user details.

Project Hub

Incoming integrations

New registration

When a registration happens on the project hub it calls the
POST /subscriptions/request endpoint with the subscription details
to create a new Subscription for the user.

 © Copyright 2017, Praekelt.org.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	
 previous |

 	Seed Stage-Based Messaging Store 0.10.1 documentation »

Production requirements and setup

Running in Production

The Seed Stage-Based Messaging Store is expected to be run in a Docker
container and as such a Docker file is provided in the source code repository.

The web service portion and celery work portion of the Stage-Based Messaging
Store are expected to be run in different instances of the same Docker container.

An example production setup might look like this:

[image: _images/stage-based-messaging-store-production.png]

 © Copyright 2017, Praekelt.org.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	Seed Stage-Based Messaging Store 0.10.1 documentation »

 HTTP Routing Table

 /binarycontent |
 /message |
 /messageset |
 /schedule |
 /subscriptions |
 /user

 		 	

 		
 /binarycontent	

 	
 	
 GET /binarycontent/	

 	
 	
 GET /binarycontent/(int:binarycontent_id)/	

 	
 	
 POST /binarycontent/	

 	
 	
 PUT /binarycontent/(int:binarycontent_id)/	

 	
 	
 DELETE /binarycontent/(int:binarycontent_id)/	

 		 	

 		
 /message	

 	
 	
 GET /message/	

 	
 	
 GET /message/(int:message_id)/	

 	
 	
 GET /message/(int:message_id)/content/	

 	
 	
 POST /message/	

 	
 	
 PUT /message/(int:message_id)/	

 	
 	
 DELETE /message/(int:message_id)/	

 		 	

 		
 /messageset	

 	
 	
 GET /messageset/	

 	
 	
 GET /messageset/(int:messageset_id)/	

 	
 	
 GET /messageset/(int:messageset_id)/messages/	

 	
 	
 POST /messageset/	

 	
 	
 PUT /messageset/(int:messageset_id)/	

 	
 	
 DELETE /messageset/(int:messageset_id)/	

 		 	

 		
 /schedule	

 	
 	
 GET /schedule/	

 	
 	
 GET /schedule/(int:schedule_id)/	

 	
 	
 POST /schedule/	

 	
 	
 PUT /schedule/(int:schedule_id)/	

 	
 	
 DELETE /schedule/(int:schedule_id)/	

 		 	

 		
 /subscriptions	

 	
 	
 GET /subscriptions/	

 	
 	
 GET /subscriptions/(int:subscription_id)/	

 	
 	
 POST /subscriptions/	

 	
 	
 POST /subscriptions/(int:subscription_id)/send	

 	
 	
 POST /subscriptions/request	

 	
 	
 PUT /subscriptions/(int:subscription_id)/	

 	
 	
 DELETE /subscriptions/(int:subscription_id)/	

 		 	

 		
 /user	

 	
 	
 POST /user/token/	

 © Copyright 2017, Praekelt.org.
 Created using Sphinx 1.4.6.

 Navigation

 	
 index

 	
 routing table |

 	Seed Stage-Based Messaging Store 0.10.1 documentation »

Index

 E
 | S

E

 	

 	
 environment variable

 	

 	BROKER_URL

 	DEBUG

 	IDENTITY_STORE_TOKEN

 	IDENTITY_STORE_URL

 	MESSAGE_SENDER_TOKEN

 	MESSAGE_SENDER_URL

 	METRICS_AUTH_TOKEN

 	METRICS_URL

 	SCHEDULER_API_TOKEN

 	SCHEDULER_INBOUND_API_TOKEN

 	SCHEDULER_URL

 	SECRET_KEY

 	STAGE_BASED_MESSAGING_DATABASE, [1]

 	STAGE_BASED_MESSAGING_SENTRY_DSN

 	STAGE_BASED_MESSAGING_URL

 	USE_SSL

S

 	

 	STAGE_BASED_MESSAGING_DATABASE

 © Copyright 2017, Praekelt.org.
 Created using Sphinx 1.4.6.

 _static/up.png

_static/ajax-loader.gif

_static/file.png

_static/comment-bright.png

_static/plus.png

_static/down-pressed.png

_static/down.png

_static/comment.png

_static/comment-close.png

_static/minus.png

_static/up-pressed.png

